Как научиться легко и быстро умножать дроби, можно ли научиться делать это в уме и как успешно подготовиться к контрольной – разбираем тему из школьной программы по математике вместе с экспертом
Как высчитать, чему равно произведение пяти восьмых и трех девятых? Или как умножить семь тринадцатых на четыре? Школьники России учатся этому, проходя одну из основных тем программы по математике – умножение дробей. Разберемся, для чего пригодится это умение, и узнаем у эксперта, как успешно подготовиться к контрольной.
Умножение дробей – одна из базовых тем школьной программы по математике | Согласно Федеральным государственным образовательным стандартам (ФГОС) 2022 года, дроби и основные действия с ними изучают в 5 классе. |
Умножение дробей можно изучать на визуальных примерах | Используя счетный материал, рисунки или реальные предметы (например, отрезать две трети от половинки пиццы или четверть от трети торта). |
Дроби умножать удобнее, если их предварительно сократить | При наличии такой возможности перед умножением дробей желательно их сократить (разделить числитель и знаменатель на одно и то же число). |
Для умножения дроби на дробь необходимо умножить знаменатель первой дроби на знаменатель второй, а числитель – на числитель. Полученные результаты составят знаменатель и числитель результата соответственно.
Полезные факты:
Сначала сократим первую дробь на 5 (числитель и знаменатель поделили одновременно на 5), числа стали меньше, действия с ними уже сделать намного проще. Во втором действии мы также не умножили сразу, а сократили на тройку в числителе и тройку в знаменателе.
В этом примере подробно рассмотрено сокращение дробей, сначала на 5, а затем на 7. Здесь в результате получилась неправильная дробь. Ее, в зависимости от задания, можно либо перевести в десятичную, получится 1,5, либо перевести в смешанное число 1 1/2.
Еще один, более сложный, пример умножения правильной дроби на смешанное число путем представления смешанного числа в виде суммы целого и дроби. После получения произведения дроби на сумму приводим полученные слагаемые к единому знаменателю путем домножения первого слагаемого на три. Далее складываем и выделяем целую часть.
Данный пример вычисляется без сокращения: первым действием перемножаем числители и знаменатели дробей, вторым – выделяем целую часть неправильной дроби, превращая ее в смешанную.
Умножение дроби на натуральное число – пожалуй, самый простой вариант умножения дробей. Чтобы выполнить это действие, нужно умножить числитель дроби на это число, а знаменатель оставить без изменений. После подсчета можно выделить целую часть, превратив обыкновенную дробь в смешанную.
Если число-множитель делится нацело на знаменатель дроби, то в результате получится целое число.
В первом примере для умножения дроби на целое число проводим умножение числителя дроби на число-множитель, а знаменатель остался без изменений. Во втором примере можем сократить произведение на 4, получив в результате целое число.
Для умножения смешанных дробей необходимо перевести их обе в вид обыкновенных и далее действовать по стандартному алгоритму: произведение знаменателей станет знаменателем результата, произведение числителей – числителем.
Далее производится сокращение и перевод обратно в смешанную дробь.
При умножении смешанной дроби на число удобно представить дробь в виде суммы целой и дробной части, произвести умножение и сложить полученные результаты.
Для перемножения двух смешанных дробей переводим обе в неправильные, затем умножаем по стандартным правилам. Вторым действием производим сокращение (делим числитель и знаменатель произведения на 7), а в полученном результате выделяем целую часть.
В данном примере не удалось провести сокращение, поэтому итоговый результат содержит четырехзначные числа. Приводим его к более простому виду, выделив целую часть.
Альбина Бабурчина, репетитор по математике, автор курсов по подготовке к ЕГЭ и ОГЭ по математике:
Дроби бывают обыкновенные (с дробной чертой) и десятичные (с запятой). Чтобы умножить две обыкновенные дроби, нужно просто перемножить числитель одной дроби с числителем другой, а знаменатель со знаменателем. Если получится сначала сократить дроби, а потом их перемножить, то это освободит вас от действий с большими числами. Поэтому везде, где можно, сначала лучше упростить и только потом делать основное действие.
Отвечает Альбина Бабурчина