Умножение дробей

Как научиться легко и быстро умножать дроби, можно ли научиться делать это в уме и как успешно подготовиться к контрольной – разбираем тему из школьной программы по математике вместе с экспертом

Умножение дробей. Фото: shutterstock.com
Альбина Бабурчина Репетитор по математике Анастасия Полищук Автор КП

Как высчитать, чему равно произведение пяти восьмых и трех девятых? Или как умножить семь тринадцатых на четыре? Школьники России учатся этому, проходя одну из основных тем программы по математике – умножение дробей. Разберемся, для чего пригодится это умение, и узнаем у эксперта, как успешно подготовиться к контрольной.

Полезная информация об умножении дробей

Умножение дробей – одна из базовых тем школьной программы по математикеСогласно Федеральным государственным образовательным стандартам (ФГОС) 2022 года, дроби и основные действия с ними изучают в 5 классе.
Умножение дробей можно изучать на визуальных примерахИспользуя счетный материал, рисунки или реальные предметы (например, отрезать две трети от половинки пиццы или четверть от трети торта).
Дроби умножать удобнее, если их предварительно сократитьПри наличии такой возможности перед умножением дробей желательно их сократить (разделить числитель и знаменатель на одно и то же число).

Умножение обыкновенных дробей

Для умножения дроби на дробь необходимо умножить знаменатель первой дроби на знаменатель второй, а числитель – на числитель. Полученные результаты составят знаменатель и числитель результата соответственно.

Полезные факты: 

  1. Если числитель одной из дробей имеет общий делитель со знаменателем другой, то можно произвести сокращение произведения до выполнения умножения.
  2. Если одна или обе дроби являются смешанными, то перед выполнением действия можно перевести их в неправильные, либо представить смешанную дробь в виде суммы целого числа и правильной дроби, провести умножение, а после представить результат вновь в виде смешанной дроби.

Примеры

Сначала сократим первую дробь на 5 (числитель и знаменатель поделили одновременно на 5), числа стали меньше, действия с ними уже сделать намного проще. Во втором действии мы также не умножили сразу, а сократили на тройку в числителе и тройку в знаменателе.

Умножение дробей

В этом примере подробно рассмотрено сокращение дробей, сначала на 5, а затем на 7. Здесь в результате получилась неправильная дробь. Ее, в зависимости от задания, можно либо перевести в десятичную, получится 1,5, либо перевести в смешанное число 1 1/2.

Еще один, более сложный, пример умножения правильной дроби на смешанное число путем представления смешанного числа в виде суммы целого и дроби. После получения произведения дроби на сумму приводим полученные слагаемые к единому знаменателю путем домножения первого слагаемого на три. Далее складываем и выделяем целую часть.

Иллюстрация без названия

Данный пример вычисляется без сокращения: первым действием перемножаем числители и знаменатели дробей, вторым – выделяем целую часть неправильной дроби, превращая ее в смешанную.

Умножение дроби на натуральное число

Умножение дроби на натуральное число – пожалуй, самый простой вариант умножения дробей. Чтобы выполнить это действие, нужно умножить числитель дроби на это число, а знаменатель оставить без изменений. После подсчета можно выделить целую часть, превратив обыкновенную дробь в смешанную.

Если число-множитель делится нацело на знаменатель дроби, то в результате получится целое число.

Примеры

В первом примере для умножения дроби на целое число проводим умножение числителя дроби на число-множитель, а знаменатель остался без изменений. Во втором примере можем сократить произведение на 4, получив в результате целое число.

Умножение смешанных дробей

Для умножения смешанных дробей необходимо перевести их обе в вид обыкновенных и далее действовать по стандартному алгоритму: произведение знаменателей станет знаменателем результата, произведение числителей – числителем.

Далее производится сокращение и перевод обратно в смешанную дробь.

Примеры

При умножении смешанной дроби на число удобно представить дробь в виде суммы целой и дробной части, произвести умножение и сложить полученные результаты.

Умножение дробей

Для перемножения двух смешанных дробей переводим обе в неправильные, затем умножаем по стандартным правилам. Вторым действием производим сокращение (делим числитель и знаменатель произведения на 7), а в полученном результате выделяем целую часть.

Умножение дробей

В данном примере не удалось провести сокращение, поэтому итоговый результат содержит четырехзначные числа. Приводим его к более простому виду, выделив целую часть.

Советы эксперта, как подготовиться к контрольной работе по умножению дробей

Альбина Бабурчина, репетитор по математике, автор курсов по подготовке к ЕГЭ и ОГЭ по математике

Дроби бывают обыкновенные (с дробной чертой) и десятичные (с запятой). Чтобы умножить две обыкновенные дроби, нужно просто перемножить числитель одной дроби с числителем другой, а знаменатель со знаменателем. Если получится сначала сократить дроби, а потом их перемножить, то это освободит вас от действий с большими числами. Поэтому везде, где можно, сначала лучше упростить и только потом делать основное действие.

Популярные вопросы и ответы

Отвечает Альбина Бабурчина

Почему умножение дробей начинают изучать в 5 классе?

Тема дробей раскрывается именно в 5 классе, так как к этому моменту ученики уже имеют в своем арсенале все необходимые для этого знания. Дроби – это азы. Без понимания этой темы дальнейшее изучение математики практически невозможно.

Зачем изучать умножение дробей?

После того как дети в школе изучают дроби, далее ни одна тема не обходится без них. По моему многолетнему опыту могу сказать, что если дроби не усвоены вовремя и на должном уровне, то все следующие темы без исключения будут «хромать». То есть без преувеличения, дроби (сначала обыкновенные, а затем и десятичные) – важнейшая тема в математике. И моя большая рекомендация для ребят в 5 классе – максимально сконцентрировано и детально изучать эту тему, уметь применять в разных ситуациях и задавать учителю все возникающие вопросы и сомнения.

Можно ли научиться умножать дроби в уме?

Все действия с дробями, разумеется, можно выполнять и в уме, все зависит от способностей конкретного ученика. А также существует много лайфхаков, которые упрощают умножение.
КП
Реклама О проекте