Таблица квадратов

Мы составили таблицу квадратов натуральных чисел до 10 и двузначных чисел, которой удобно пользоваться: благодаря ей не нужно в уме возводить число во вторую степень. Достаточно распечатать таблицу и найти в ней подходящее значение

Таблица квадратов от 1 до 100. Фото: shutterstock.com
Александр Мельников Преподаватель информатики и математики Анна Стрельцова Автор КП

Квадратом числа называют произведение на самого себя один раз или возведение во вторую степень. В школе это действие проходят в 5 классе. Например, чтобы вычислить квадрат числа 5, нужно умножить его на 5: в итоге получится 25. С натуральными числами до 10 вычисления довольно просты, а посчитать квадрат двузначного числа в уме уже сложнее. Поэтому для удобства можно пользоваться таблицами: это облегчает вычисления.

Таблица квадратов натуральных чисел

Натуральные числа — те числа, которые мы используем при счете или при перечислении вещей, объектов. К натуральным относятся только полные и неотрицательные числа. В математике их много: поэтому мы сделали таблицу квадратов натуральных чисел от 1 до 10.

n12345678910
149162536496481100

Таблица квадратов двузначных чисел

Чтобы вычислить квадрат двузначного числа, умножить число на самого себя. В результате получается уже четырехзначное число. Если при вычислении квадратов чисел до 10 достаточно вспомнить таблицу умножения, то посчитать квадрат двузначного числа в уме уже сложнее. Проще всего для таких вычислений использовать таблицу.

0123456789
1100121144169196225256289324362
2200441484529576625676729784841
330096110241089115612251296136914441521
41600168117641849193620252116220923042401
52500260127042809291630253136324933643481
63600372138443969409642254356448946244761
74900504151845329547656255776592960846241
86400656167246889705672257396756977447921
98100828184648649883690259216940996049801

Таблица квадратов до 100

В таблице мы собрали квадраты чисел от 1 до 100: она пригодится как школьникам, так и студентам. Вы можете распечатать таблицу или пользоваться ей онлайн.

1²=111²=12121²=44131²=96141²=1681
2²=412²=14422²=48432²=102442²=1764
3²=913²=16923²=52933²=108943²=1849
4²=1614²=19624²=57634²=115644²=1936
5²=2515²=22525²=62535²=122545²=2025
6²=3616²=25626²=67636²=129646²=2116
7²=4917²=28927²=72937²=136947²=2209
8²=6418²=32428²=78438²=144448²=2304
9²=8119²=36129²=84139²=152149²=2401
10²=10020²=40030²=90040²=160050²=2500
51²=260161²=372171²=504181²=656191²=8281
52²=270462²=384472²=518482²=672492²=8464
53²=280963²=396973²=532983²=688993²=8649
54²=291664²=409674²=547684²=705694²=8836
55²=302565²=422575²=562585²=722595²=9025
56²=313666²=435676²=577686²=739696²=9216
57²=324967²=448977²=592987²=756997²=9409
58²=336468²=462478²=608488²=774498²=9604
59²=348169²=476179²=624189²=792199²=9801
60²=360070²=490080²=640090²=8100100²=10000

Популярные вопросы и ответы

Отвечает Александр Мельников, преподаватель информатики и математики онлайн-школы «Коалиция», эксперт ЕГЭ и ОГЭ, сертифицированный преподаватель проекта «Математическая вертикаль».

Как пользоваться таблицей квадратов?

Таблица квадратов — это таблица, содержащая квадраты чисел. Квадрат числа — это результат умножения какого-либо числа на самого себя, то есть число, возведенное во вторую степень.

В таблице пересечение цифр слева в столбце и сверху в строке дает квадрат искомого числа. Например, нужно найти квадрат числа 15. В столбце слева берем первую цифру данного числа «1». В самой верхней строке берем вторую цифру данного числа «5». На пересечении данных цифр получаем квадрат числа 15, то есть 225.

Таблицу квадратов также можно использовать для извлечения квадратного корня — обратной операции возведения в квадрат. Например, √225=15.

Как быстро выучить таблицу квадратов?

Если мы говорим о сдаче ОГЭ и ЕГЭ базового уровня по математике, то учить таблицу квадратов необязательно, так как она будет в справочном материале. А вот для ЕГЭ по профильной математике это делать нужно: справочные материалы не предоставляются. Пригодится таблица квадратов и позже, при обучении в вузе. Вот несколько советов, как это сделать.

1. Если число заканчивается на 0, его легко возвести в квадрат — необходимо только дописать пару нулей: 60 х 60 = 3600.

2. Если число заканчивается на 5, то следует умножить первую цифру (x) на (x+1) и дописать к полученному числу «25». 65 х 65 = 6 х 7 = 42 приписываем 25 и получаем 4225.

3. Можно воспользоваться формулой (a + b)2 = a2 + 2ab + b2 . Как мы уже выяснили, возводить в квадрат числа, оканчивающиеся на 0, очень просто. Следовательно, а — это число, которое делится на 10, а b — остаток от деления на 10. Приведем пример. Возведем в квадрат 32. 32 можно представить как 30 (число делится на 10) и 2 (остаток от деления на 10): (30+2)2 = 302 + 2 х 30 х 2 + 22 = 900 + 120 + 4 =1024.

Для начала нужно выучить таблицу квадратов первого десятка, так как она используется чаще всего: 121, 144, 169, 196, 225, 256, 289, 324, 361. И важно запомнить, что не бывает квадратов, последняя цифра в которых 2, 3, 7, 8. Также часто используются квадраты таких чисел как 21, 24, 25, 26: они встречаются чаще других.

Выучить данные значения квадратов можно довольно быстро: попробуйте просто ежедневно выписывать значения в тетрадь.

Как извлечь корень числа без таблицы квадратов?

Число необходимо разложить на простые множители, например 1225 = 5 х 5 х 7 х 7 = 5272. Значит, √1225 = √(5272) = 5 х 7 = 35. Благодаря разложению на множители можно извлечь корень из многозначного числа, выходящего за рамки таблицы квадратов.
КП
Реклама О проекте